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Abstract 

 

 

EFFECTS OF LAND COVER AND RIPARIAN BUFFERS ON COLD-WATER FISH 

ASSEMBLAGES IN UPPER SOUTH FORK NEW RIVER HEADWATER STREAMS 

 

Cristina Lee Sanders 

B.S., University of Phoenix 

M.S., Appalachian State University 

 

Chairperson: Dr. Shea R. Tuberty 

 

 Climate change combined with expanding urbanization and changes to land-use pose 

a serious threat to many cold-water species as temperature continues to increase. Riparian 

vegetation is an essential component of a stream ecosystem that reduces runoff, improves 

bank stability, and provides shading that regulates the water temperature thresholds. Western 

North Carolina has many sensitive cold-water fish species that are vital to the stability of the 

ecosystem and also provide substantial revenue to the state including brook (Salvelinus 

fontinalis), brown (Salmo trutta), and rainbow trout (Oncorhynchus mykiss).  

 This study focused on the effects of biogeophysical components on cold-water fish 

assemblages within the eight headwater sub-basins that comprise the Upper South Fork New 

River watershed and vary widely in ability to support sensitive and endemic fish species. The 

relative abundance of cold-water fish were sampled by electrofishing 16 sites during the 

spring and summer of 2019 and then compared to GIS determined riparian corridor density 

and height measurements, the percentage of sub-basin wide impervious surfaces, Bank 

Erosion Hazard Index (BEHI) scores, Wolman Pebble Count scores, water temperature, and 
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specific conductivity. Fish size and weight were also recorded to determine size-class 

composition and condition metrics.  

 The monthly maximum stream temperature did surpass static laboratory determined 

thermal suitability limits for brook and brown trout; and diurnal fluctuating laboratory 

determined limits for rainbow trout (20.0-22.5 °C) in 14 sites. However, the regression 

analyses of riparian heights (R2 = 0.05) and densities (R2 = 0.07) within each sampling reach 

did not significantly reduce stream temperature between sites. Furthermore, weight and 

length measurements for cold-water species was consistent between sites when temperature 

stress was expected to cause metabolic effects. Conductivity concentrations ranged from 

18.5-501.2 µS/cm between sub-basins and were highly reduced as the percentage of 

impervious surfaces decreased. Although water chemistry did not impact cold-water fish 

conditions in the USFNR; stream bank erosion, benthic substrate, riparian height, and 

impervious surfaces did. The relative abundances of cold-water fish increased with quality of 

habitat which emphasizes the importance for management decisions to continue to preserve 

or improve habitat conditions based on these findings. 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

 

 

 

 

Acknowledgements  

 I would like to acknowledge the committee chair, Dr. Shea Tuberty, for believing in 

my potential for success in graduate school by accepting me into his lab, for giving me every 

opportunity to learn new techniques and grow as a researcher, and for his guidance and 

support throughout the entire process. I would also like to acknowledge Dr. Jeffery Colby for 

his patience and help in teaching me how to use GIS in the face of a steep learning curve. 

Additional gratitude to Mr. Jason Selong for leading me to relevant research articles and his 

invaluable expertise on local fish species. Dr. Michael Madritch was also an essential 

resource with his much-appreciated advice on statistical analysis and data troubleshooting.  

 A special thanks to my lab mate Grant Buckner for his help with both field work and 

intellectually stimulating problem-solving conversations. Most importantly this project 

would not have been possible without the help of my rock-solid undergraduate volunteers 

Hannah Woodburn, Ashley Joyner, Jasper Yoke, and Kim Beamer. I cannot begin to thank 

you all enough.  

 Lastly, I would like to acknowledge the Department of Biology at Appalachian State 

University for providing financial support and the IACUC committee for approving this 

research.  

 

 

 

 



 

vii 
 

 

 

 

Dedication 

 I would like to dedicate this thesis to my husband Brian for always supporting me and 

keeping me sane during the times I felt overwhelmed and for helping me with field work 

when I needed an extra set of hands. I would also like to dedicate my research to my 8-year 

old son Landon for always brightening my day and being the brightest young aquatic 

ecologist that ensured all of the fish were returned to the streams gently and unharmed.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

 

 

 

Table of Contents 

Abstract…………………………………………………………………………………….....iv

Acknowledgements…………………………………………………………………………...vi

Dedication……………………………………………………………………………………vii

List of Tables…………………………………………………………………………………ix 

List of Figures………………………………………………………………………………...xi 

Foreword…………………………………………………………………………………….xvi 

Introduction……………………………………………………………………………………1 

Methods……………………………………………………………………..............................5 

Results………………………………………………………………………………………..14 

Discussion……………………………………………………………………………………27  

References……………………………………………………………………………………35 

Tables and Figures…………………………………………………………………………...42 

Vita…………………………………………………………………………………………...70 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

 

 

List of Tables  

 

Table 1. Sub-basin, impact rating, and geographical coordinates of each sampling 

site……………………………………………………………………………………………42 

 

Table 2. Bank Erosion Hazard Index (BEHI) categories and scores used to rank the 

erodibility of a stream bank………………………………………………………………….42 

 

Table 3. Location of Eureka Manta 20+ and Trimeter water quality sondes in the USFNR 

headwater streams………………………………………………………………………...…43 

 

Table 4. Relative percent focal species abundance and relative percentages of functional 

feeding groups by sampling site (GC/FF/WC = reference; EF/MF/SF = moderately impacted; 

HC/BC = highly impacted).………………………………………………………………….44 

 

Table 5. Wolman Pebble Count scores, category, and D50 values by site and sub-basin…...45 

 

Table 6. List of individual sub-basins and the mean time (hrs), greatest time (hrs), and 

percentage of the month that water temperatures exceeded 20°C……………………..........45 

 

Table 7. Comparison of average riparian height (ft), average density percentages, and 

categories for each 150-m sampling transect within USFNR watershed. GC/FF/WC = 



 

x 
 

reference; EF/MF/SF = moderately impacted sub-basin; HC/BC = highly impacted sub-

basin……………………………………………………………………………………….…46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 
 

List of Figures 

Figure 1. Map showing the Upper South Fork New River watershed and associated sub-

basins in Watauga County, NC………………………………………………………………47 

 

Figure 2. Hillshade representation of the vegetation layer of the 2018 LiDAR-Geiger data at 

HC-SD sampling site, adjacent to the Boone Mall parking lot in Watauga County, NC……48 

 

Figure 3. ArcMap figure of the connected multipoints drawn every 10-meters that form the 

polygon features that represent riparian corridor buffers within the sampling transect…..…48     

 

Figure 4. Result of the Feature to Raster tool which converted each of the created polygon 

features into rasters that can be used to calculate riparian height and density statistics within 

the sampling areas……………………………………………………………………………49 

 

Figure 5. Left-.LAS Point Statistics as Raster for vegetation layer; right-.LAS Point Statistics 

as Raster for bare-earth layer………………………………………………………………...49 

 

Figure 6. Model of canopy density; darker areas indicate higher vegetative density  

values.......................................................................................................................................50 

 



 

xii 
 

Figure 7. Minus tool (top) and Raster Calculator (bottom) in ArcMap 10.5; calculates the 

differences in height between LiDar-Geiger vegetation layers and LiDar-Geiger bare-earth 

layers……….………………………………………………………………………………...50 

 

Figure 8. Resulting impervious surface layer created using Supervised Learning tool in the 

Feature Analyst extension; pink polygons indicate impervious surfaces that were identified 

using the initial learning algorithm…………………………………………………………..52 

 

Figure 9. Examples of missed or misidentified features that were corrected from the Feature 

Analyst output shapefile during the manual editing process. Brown and red roofs were often 

missed and portions of field were misidentified as impervious surface……………………..52 

 

Figure 10. Plotted Fulton Condition Factor (K) and total length (cm) for YOY and adult 

brown trout during summer collections; points are color-coded by sub-basin to determine 

condition patterns…………………………………………………………………………….53 

 

Figure 11. Regression comparison of log weight (g) and length (mm) measurements for the 

summer fish collection to determine fish conditions between cold-water species; blue line 

indicates 95% predicted values and pink line represents the 95% confidence interval (P = 

<0.001)……………………………………………………………………………………….54 

 

 



 

xiii 
 

Figure 12. Joint-Plot Principle Components Analysis (PCA) of Spring and Summer 

collections; Spring PCA accounts for 71.21% of variation within the dataset and the Summer 

accounts for 63.93%; triangles represent study sites, blue vector lines represent fish species, 

and red vector lines represent relevant environmental variables…………………………….56 

 

Figure 13. Regression analysis of the Wolman Pebble Count Scores compared to the relative 

percentage of cold-water fish abundances for the spring (top; P = 0.002) and summer 

(bottom; P ≤ 0.001) collection; dashed blue line represents 95% confidence interval and pink 

line represents 95% predicted values………………………………………………………...57 

 

Figure 14. Graphical representation of the Bank Erosion Hazard Index (BEHI) scores at each 

site within the Upper South Fork New River (USFNR) watershed; green bars represent low, 

yellow bars represent moderate, and red bar represents high potential for stream bank 

erosion……………………………………………………………………………..…………58 

 

Figure 15. Regression comparison of Wolman Pebble Count scores and Bank Erosion Hazard 

Index (BEHI) scores; blue line represents 95% confidence interval and red line represents 

95% predicted values (P = <0.001)…………………………………………………………..59 

 

Figure 16. Median monthly water temperatures for each sub-basin within the Upper South 

Fork New River (USFNR) watershed for 2018 and 2019………………………………...…60 

 



 

xiv 
 

Figure 17. Linear regression of relative percentage of cold-water species abundance 

compared to median water temperatures for both spring (top; P = 0.120) and summer 

(bottom; P = 0.012) collections; red line indicates 95% predicted values; blue line represents 

95% confidence interval; black line indicates regression………………………………..…..61 

 

Figure 18. Median monthly specific conductivity values for each sub-basin within the Upper 

South Fork New River (USFNR) watershed for 2018 and 2019…………………….………62 

 

Figure 19. Regression analysis of relevant abundances of cold-water fish species compared to 

concentrations of specific conductivity (µS/cm) during spring (top; P = 0.170) and summer 

(bottom; P = 0.134) collections. Red line indicates 95% predicted values; blue line indicates 

95% confidence interval; black line represents regression…………………………..………63 

 

Figure 20. Top: regression of riparian height (ft) compared to median summer temperatures 

(°C) (P = 0.385); bottom: regression of riparian height (ft) compared to median specific 

conductivity (µS/cm) (P = 0.013)……………………………………………………………64 

 

Figure 21. Top: riparian density (%) compared to median summer temperature (°C) (P = 

0.321); bottom: riparian density (%) compared to median specific conductivity (µS/cm) 

values (P = 0.016)…………………………………………….…………………….……..…65 

 

 



 

xv 
 

Figure 22. Impervious surfaces land-cover map of the USFNR watershed and sub-basins. 

Black outlines = sub-basin boundaries; blue = impervious surfaces; white = non-impervious 

surfaces. Sub-basin names are color coded based on impact level (green = reference; orange 

= moderate; red = high).………………………………………………………………..……66 

 

Figure 23. Top: regression of the percentages of impervious surfaces on a sub-basin level 

compared to concentrations of specific conductivity (µS/cm); bottom: regression of the 

percentages of impervious surfaces on a sub-basin level compared to concentrations of 

specific conductivity (µS/cm) with outlier removed………………………………….……..67 

 

Figure 24. Regression analysis comparing relative percentages of cold-water fish species in 

spring (top; P = 0.006) and summer (bottom; P = 0.002) to average riparian corridor 

heights…………………………………………………………………………………….….68 

 

Figure 25. Regression analysis comparing relative percentages of cold-water fish species in 

the spring (top; P = 0.004) and summer (bottom; P = 0.002) to sub-basin wide percentages of 

impervious surface………………………………………………………………………...…69 

 

 

 

 

 

 



 

xvi 
 

 

 

 

 

 

Foreword 

 This thesis has been formatted in accordance with the styling requirements for 

submission to the peer-reviewed journal Freshwater Biology.  

 

 

 

 

 

 

 



 

1 
 

Introduction 

Riparian zones are an essential part of the stream ecosystem, especially during the summer 

months when shading can block solar radiation and combat rising water temperatures (Cross 

et al., 2013; Poole & Berman, 2001). The largest influence in stream temperature changes 

occurs through air-water energy exchanges (Dugdale et al., 2017).  Solar radiation is the 

largest provider of this heat exchange, especially during the hot, summer months. Since the 

sun has the greatest influence on water temperature, riparian vegetation can act as a buffer to 

limit the shortwave solar radiation, however, the shading ability of riparian vegetation 

depends on the size of the stream (Imholt et al., 2011). A 2001 study by Poole & Berman 

listed riparian shade as highly important for thermal buffering in stream orders 1 & 2 and 

moderately important for stream orders 3 & 4, with minimal influence on larger streams. 

Riparian shading is not the only important characteristic in headwaters, Poole & Berman 

2001 also list phreatic ground water as highly important in stream orders 1 & 2 and moderate 

in stream orders 3 & 4.  Increasing urbanization and changes in land-use has resulted in a 

significant reduction of these vegetative zones within the United States and five of the 

warmest years on record since 1880 have all occurred since 2015 with 2019 listed as the 

second warmest year (Rutherford et al., 2004; NOAA, 2020).  Therefore the combination of 

both climate change and urbanization impacts poses a threat to cold-water sensitive aquatic 

species.  

Increasing temperatures can have a detrimental effect on many cold-water fish 

species of the southern Appalachian Mountains that are particularly vulnerable to specific 

temperature thresholds. Among these species is the brook trout (Salvelinus fontinalis), which 

is the only trout species native to North Carolina. Other cold-water species in the southern 
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Appalachian region include the introduced brown trout (Salmo trutta) andrainbow trout 

(Oncorhynchus mykiss), mottled sculpin (Cottus bairdi) and the cool-water blacknose dace 

(Rhinichthys atratulus). Salmonids, which include trout species, have been extensively 

documented as being sensitive to increasing temperatures. The known thermal tolerances 

between salmonid species does differ depending on the type of study conducted. A study by 

Carlson et al., 2017 found the following preferred growth temperature ranges: brown trout 

(12.0-20.0°C), brook trout (11.0-20.5°C), and rainbow trout (12.0-22.5°C). The stress from 

increasing temperature can affect physiological and behavioral responses. Directly, changes 

in metabolism can hinder growth rate and overall survival rates (Bell, 2006; Carlson et al., 

2017; Wehrly et al., 2007). Reproduction can also be impacted by temperature differences 

because spawning ques for salmonids are based on a specific temperature range, prolonged 

elevated temperatures can affect spawn timing which possibly leads to the eggs hatching 

during an undesirable period with increased competition or limited resources (Bell, 2006; 

Cook et al., 2018; Merriam et al., 2017). Indirect effects caused by an increase in water 

temperature can alter behavioral interactions by making the fish change normal movement 

patterns. Moving to a previously unoccupied section of the stream can lead to abnormal 

competition between other species, differences in habitat selection, and dietary differences 

due to changes in prey availability or suitability (Bell, 2006; Wehrly et al., 2007).  

In addition to reducing solar inputs, riparian zones can also stabilize stream banks and 

reduce the amount of contaminant runoff that enters a waterway. Ionic concentrations, such 

as chloride from road salt and sulfates, increases in rivers and streams as natural lands are 

removed and replaced by impervious surfaces (Morgan et al., 2012; Hedrick et al., 2010). 

Chloride from road salt readily washes into the waterways and elevates concentrations in the 
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winter months but can also accumulate within the soil and groundwater which can increase 

levels during the warmer months as well (Morgan et al., 2012). Most studies focus on 

temperature; the effects of environmentally relevant concentrations of freshwater salinization 

on salmonids and other cold-water fish species is not well documented, but it is a growing 

area of concern (Hintz & Relyea 2017). In parts of western North Carolina, chloride inputs 

from road salt applications continue to accumulate in the susceptible low-order headwater 

streams. A study by Hintz & Relyea 2017, found that rainbow trout exposed to 

environmentally relevant concentrations of NaCl did reduce fish growth but had low effects 

on mortality over a 25-day period. This could occur because salinity has an influence on food 

intake and metabolic rates (Boeuf & Payan, 2001). Freshwater salinization can also 

negatively impact lower trophic levels. Sensitive aquatic macroinvertebrates, which are the 

primary food source for many fish species in western North Carolina, react negatively to 

increasing levels of road salt (Fleetwood, 2017). Predicted climate changes, coupled with 

reduced riparian zones, could not only affect biodiversity but also harm the substantial 

income that the fishing industry profits. Mountain trout fishing brings in substantial revenue 

and job opportunities for the state. In 2014, the annual revenue was approximately $210.7 

million from trip expenses, fishing equipment, and licensing (NCWRC, 2015).  Revenue 

aside, the mountain trout fishing industry alone created 3,200 jobs in North Carolina 

(NCWRC, 2015).  

The Upper South Fork New River (USFNR) is a unique community that contains 

both natural and urban headwater streams that supports wild trout reproduction in western 

North Carolina despite heavy development within the watershed. The productivity of 

naturalized trout populations in a continuously growing environment has amazed fisheries 
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biologists throughout the region. The presence of federally owned forested headwaters 

running off the Blue Ridge Parkway’s high elevation peaks as well as urban areas with high 

percentages of impervious surfaces vastly changes the biogeophysical components between 

sub-basins. This rare combination of forested and urbanized streams warranted further 

research to determine which environmental parameters are driving local fish assemblages as 

well as identify which environmental variables need to be preserved to deter future impacts 

as human development continues to increase.  

 In this study, cold-water fish assemblages were collected within the USFNR 

watershed using electrofishing techniques in the spring and summer months to determine 

seasonal stressors. The fish were captured from a total of 16 sites, 2 per sub-basin, were 

identified to the species level and weight and length measurements were recorded. A 150-

meter transect was used for the sampling area and 3 separate mesohabitats (riffle, run, pool, 

bank) were sampled at every site. The data from the captured fish was compared to a 

multitude of associated environmental factors to determine which variables influence cold-

water fish assemblages in small, headwater streams. Water chemistry data was collected from 

Eureka Manta 2 in-situ water chemistry sondes that recorded a data point every 15 minutes at 

the catchment in each of the 8 headwater sub-basins that comprise the USFNR by the 

AppAqua research cluster at Appalachian State University (ASU, 2020). Stream 

sedimentation was analyzed using a Bank Erosion Hazard Index (BEHI) and a modified 

Wolman Pebble Count at each of the 16 sampling transects (WVDEP, 2019a; WVDEP, 

2019b). Riparian vegetation was calculated using GIS to determine the height and percent of 

vegetative density within a 25-foot corridor width along each sampling transect. Lastly, land 

cover data was calculated using 6-inch aerial photography to determine the percentage of 
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impervious surfaces within each sub-basin in the USFNR watershed upstream of the water 

chemistry data sondes.  

 The first objective of this study was to assess cold-water fish assemblages within the 

USFNR headwater streams and relate the assemblages to water temperature, conductivity, 

sedimentation, stream-bank erosion, and riparian heights/densities to determine which 

environmental variables have an impact on cold-water species. The second objective was the 

development of riparian height and density models and impervious surface data within the 

USFNR using Geographic Information Systems (GIS). This study is aimed to provide data to 

assist Local, State and Federal agencies in the development of strategies to maintain 

biodiversity and recreational mountain fisheries through informed policy making, smart 

growth, as well as conservation efforts, monitoring, and habitat restoration. 

Materials and Methods 

Study Sites 

The USFNR watershed is nestled within the southern Appalachian Mountain range in Boone, 

North Carolina. It is divided into eight sub-basins: State Farm, East Fork, Goshen, Middle 

Fork, Boone Creek, Hodges Creek, Winkler Creek, and Flannery Fork (Figure 1) (Kinlaw, 

2019). This watershed contains headwater stream sub-basins that are influenced by a wide 

spectrum of either impervious surface and heavily forested areas. Therefore, stream 

conductivities within each sub-basin vastly differ and have been categorized from low, 

moderate, to high based on long-term historical data that has been collected by the AppAqua 

research cluster at Appalachian State University since 2010. The heavily forested sub-basins 

with low conductivity (Goshen Creek, Winkler Creek, and Flannery Fork) serve as reference 

streams to compare to the somewhat impacted streams (East Fork and Middle Fork) and 
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severely impacted streams (Boone Creek and Hodges Creek) with high impervious surface 

percentages. 

 

Study Fish 

 Within the USFNR watershed, sixteen 150-meter transects were sampled for cold-

water fish assemblages in Spring (May and early June) and again in warmest period of 

summer (late July and August) to represent the temporal differences that can impact cold-

water fish distribution. Two transects were sampled per sub-basin of the USFNR watershed 

(Table 1). Within each of these transects four mesohabitats (e.g. riffle, run, pool, streambank) 

were identified and sampled using a three-pass depletion method to ensure every species 

present within the transect was recorded. Every mesohabitat was sampled for 100 seconds to 

give a total of 1200 seconds per entire 150-meter transect using a Smith Root LR-24 

backpack electrofisher (Holcomb et al., 2013). This electro-fisher automatically calculates 

the direct current (DC) pulse output using the anode and cathode to measure the conductivity 

of the stream (Smith Root, 2020). This technique ensured that all captured species were 

returned unharmed (ASU IACUC Protocol 18-17;5/1/2018). 

 The focal species for this study were brook trout (Salvelinus fontinalis), brown trout 

(Salmo trutta), rainbow trout (Oncorhynchus mykiss), mottled sculpin (Cottus bairdii), and 

blacknose dace (Rhinichthys atratulus) because these are the primary species that occupy the 

low diversity, high elevation, cold-water trout streams of the southern Appalachian mountain 

region (NCDENR, 2013). The relative species abundance percentage of the focal species was 

calculated using the following formula: 
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                          𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 % =
𝑁 𝐹𝑜𝑐𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠

𝑁 𝑇𝑜𝑡𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠
 𝑥 100                          (1) 

 N = number of collected fish 

This calculation was used to control for the variability of stream orders between sub-basins 

and to include the coinciding non-focal fishes. The relative abundance calculations were 

appropriate because the fish collection protocol was standardized for every site which 

provided comparable samples.  

 The focal fish data was then compared to water chemistry, GIS riparian height and 

density calculations, GIS impervious surface percentages, pebble count scores, and BEHI 

scores using a joint-plot Principle Component’s Analysis (PCA) in PC-ORD v.7 to identify 

influential variables. The variables of interest revealed by the PCA were then compared using 

linear regressions to test for relationships and the significance of each regression was 

determined in SigmaPlot V14.0 using either a Pearson Correlation or Spearman-Rank 

Correlation depending on the results of the Shapiro-Wilk test of normality.  

 Additionally, each captured fish was identified to genus and species, weighed, and 

measured for total length to determine size class composition metrics; this data was also 

recorded for the annual collection report under the NC Wildlife Resources Commission 

Scientific Collection Permit # 19-SFC00038. The Fulton’s condition factor (K) was 

calculated for summer collected young of year (YOY) and adult brown trout using the 

following formula (Froese, 2006): 

                                                               𝐾 = 100
𝑊

𝐿3
                                                              (2) 

 K = Fulton’s condition factor; W = whole body wet weight (g); L = total length (cm) 
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 Fulton’s condition factor is used to account for normal fish growth based on ‘cube 

law’ because fish do not proportionately grow in length and weight, instead fish increase 

more in weight than length (Froese, 2006). Fulton’s condition factor was only calculated for 

brown trout due to their abundance and widespread distribution throughout the watershed; 

whereas the total number of other captured trout species was sparse and insufficient to 

compare among sub-basins.  

 

Bank Erosion Hazard Index (BEHI) 

The stream bank was assessed to determine the potential for bank erosion and 

stability using the Bank Erosion Hazard Index (BEHI). In this method the root depth to bank 

height ratio, percentage of root density, streambank angle, and percentage of vegetative 

surface protection were calculated, and the scores were factored into an overall BEHI index 

value as described below in Table 2 (Harman & Jones, 2017). The BEHI index value 

categorized each stream as very low, low, moderate, high, very high, or extreme; with very 

low being the least eroded (Harman & Jones, 2017). These measurements were taken 5 times 

(~once in 100 linear ft) per 150-meter transect when both sides of the stream bank were 

homologous in nature (Harman & Jones, 2017). If the opposing banks were not homologous, 

a measurement was taken for both sides. The total index values were combined and averaged 

to represent the overall BEHI for each 150-meter sampling transect.  

 

Modified Wolman Pebble Count 

A coarse benthic assessment was surveyed using a modified Wolman pebble count to 

determine the quality of the stream bed at each sampling site. Every 150-meter sampling 
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transect was divided into 16 sub-transects (~30 feet apart) where 25 particles were randomly 

selected using the zig-zag method from bank to bank. The particle located at the tip of the 

right toe was selected using the tip of the index finger to avoid sampling bias. The 

intermediate axis of each particle was measured using a gravelometer and recorded (USFWS, 

2004). The particles were identified into one of the following size categories: sand < 2 mm, 

gravel 3-64 mm, cobble 65-255 mm, and boulder > 255 mm (WVDEP, 2019a). The particles 

were then compared to a point value and given a score; the total score categorized the stream 

benthos as poor (≤ 2.5), marginal (≤ 3), or good (˃ 3) (WVDEP, 2019). Additionally, the data 

was organized by coarse particle size frequency and cumulative frequency distributions in 

Microsoft Excel 2010 using a modification of the methods recommended by Wolman (1954). 

An additional measure was employed to determine the median particle class size (D50) of the 

collected particles when distributions were arranged from smallest to largest. This allowed 

the determination of a single size class value for spatial and temporal comparison of particle 

sizes.  

 

Water Chemistry 

 Water chemistry data was recorded using in-situ Eureka Manta 20+ water quality 

sondes in Boone Creek, East Fork, Flannery Fork, Goshen Creek, Middle Fork, and State 

Farm that remain in the stream at all times. Winkler’s Creek and Hodge’s Creek were 

recorded with Eureka Trimeter sondes. The sonde locations within the streams are listed in 

Table 3. The Eureka Manta 20+ water chemistry sondes record temperature, pH, specific 

conductivity, dissolved oxygen, and depth every 15 minutes. The Eureka Trimeter sensors 

record temperature, specific conductivity, and depth every 15 minutes. The sensors were 
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calibrated and serviced monthly by the ASU AppAqua research cluster to ensure accuracy. 

During these intervals, the recorded data was uploaded to a field laptop and checked for 

inconsistencies that can occur due to dead batteries, fouled probes following high water 

events, or failing probes. After the quality assurance check, the data was ready to be 

uploaded to the Graphical User Interface (GUI) on the Department of Geography and 

Planning.   

 The water temperature and conductivity data was analyzed using a Kruskal-Wallis 

one-way Analysis of Variance on ranks combined with the Dunn’s method post-hoc test to 

determine statistical differences between sites and sampling seasons.  

 

LiDAR-Geiger Riparian Calculations 

The width of each riparian corridor was created using ArcMap 10.5 and the 

percentage of riparian density within each corridor was calculated using 2018 Geiger-LiDAR 

point cloud data.  Based on the percentage of riparian density, each riparian corridor was 

classified as either poor, fair, or good condition in accordance with the Catchment 

Assessment of the North Carolina Stream Quantification Tool (Harman & Jones, 2017). 

Riparian zones classified as poor condition have less than 50% of the stream length 

containing greater than 25 feet of riparian corridor width, fair condition has greater than 25 

feet of corridor width in 50-80% of the stream length, and good condition has greater than 25 

feet of riparian vegetation in more than 80% of the stream reach (Harman & Jones, 2017).  

The classification of riparian density and height were analyzed using 2018 QL1 aerial 

Geiger-LiDAR data that was obtained from the N.C. Emergency Management’s Spatial Data 
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Download website (NCDPS, 2018). The downloaded Geiger-LiDAR data was collected at 8 

points per meter and is separated into the following relevant class codes: 0-never classified, 

1-unassigned, 2-ground, 3-low vegetation, 4-medium vegetation, 5-high vegetation (NCDPS, 

2018). The individual tiles that correspond to each of the 16 collection sites in the USFNR 

were downloaded as individual .LAS files, imported into ArcMap, and converted into an 

.LASD dataset by creating a NEW LAS Dataset in the ArcCatalog. At this time the statistics 

were calculated to find the average point count of the data and the georeferencing system was 

verified. Two LAS dataset layers were created, one for vegetation and one for bare-earth 

using the Make .LAS Dataset Layer tool and selecting the appropriate class codes. The 

vegetation layer used class codes 1, 3, 4, and 5 to include all vegetation and the unassigned 

values that may contain vegetation data; the bare-earth layer used only class code 2-ground 

data (ESRI, 2019). The newly created LAS datasets were then each converted to a raster 

using the LAS Dataset to Raster tool; the sampling value was set to 4 times the average point 

spacing value which was previously calculated during the statistics step (ESRI, 2019). Lastly, 

the Hillshade tool was used to provide a 3D representation of the layers (Figure 2). The 2018 

6-inch aerial photography for Watauga County, NC was also imported into ArcMap 10.5 to 

compare to the bare-earth layer to verify the edge of the stream banks when drawing the 

sampling transects.             

A total of 32 polygon transects were created to capture the riparian corridors at each 

of the 16 sampling sites (2 polygons per site to represent both stream banks). The corridor 

width was extended 25-feet perpendicularly from the edge of the stream bank for the entirety 

of the 150-meter sampling area using heads up digitizing. Initially a new shapefile feature 

class of multipoints was created in ArcCatalog using the same georeferencing system as the 
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LiDAR-Geiger data for every riparian corridor. Each corridor was drawn using “create 

features” in the Editor Toolbar. A point was created every 10-meters along the sampling 

area; this distance was selected so that the corridor would follow the curvature of a stream 

without cutting out essential vegetation data. From each multipoint, an additional multipoint 

was extended perpendicularly 7.62-meters (25-feet) from the stream bank to provide an equal 

distance throughout the transect.  

A new shapefile for polygons was then created in ArcCatalog for each of the 32 

riparian corridors and edited using the Editor Toolbar to connect the previously drawn 

multipoints and form a closed polygon (Figure 3). Each polygon was then converted into a 

raster using the Feature to Raster tool and the output cell size was set to 0.67 meters (4 times 

average point spacing) to keep the values consistent with the other layers (Figure 4). The 

canopy density was then calculated with the .LAS Point Statistics as Raster tool using the 

previously created vegetation raster with class codes 1,3,4, and 5 selected (ESRI, 2019). The 

Is Null and Con tools were used to convert all cells with no data to 0 to eliminate noise 

(ESRI, 2019) (Figure 5). These steps were repeated using the bare-earth raster with class 

code 2 selected (Figure 5).    

After the vegetation and bare-earth layers were conditioned separately, they were 

added together using the Plus geoprocessing tool to produce the canopy density map (Figure 

6) (ESRI, 2019). The combined layer was then converted to a floating point and divided to 

create a ratio from 0.0-1.0 which represents the canopy density; 0 = no vegetation and 1 = 

dense canopy (ESRI, 2019). To determine the percentage of riparian density within each of 

the sampling transects the data within each polygon raster was converted into a binary format 

by masking the raster using Raster Analysis and then reclassifying the data using the 
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Reclassify tool. The binary data was classified as 1 = vegetation and 0 = no vegetation or no 

data. The count data for each classification was located in the attribute table. To determine 

the percentage of riparian density the following formula was used:  

 

The riparian height was also calculated in ArcMap 10.5 using the Minus tool by subtracting 

the LiDAR bare-earth layer from the LiDAR vegetation layer (Figure 7) (ESRI, 2019). The 

calculated height differences were then conditioned using the condition feature in the Raster 

Calculator to remove any negative values (Figure 7) (ESRI, 2019). The height within each 

sampling transect was determined by first using Raster Analysis to select the desired polygon 

transect raster and creating a mask. The sum, minimum, maximum, and mean canopy heights 

were calculated using Zonal Statistics.   

 

Percent Impervious Surface Classification 

Land cover data was classified as impervious or non-impervious surface using 2018 

6-inch aerial photography for Watauga County, NC. The aerial photography was uploaded 

into ArcMap 10.5 and the delineated shapefile of the USFNR watershed boundary was 

extracted using the “Extract by Mask” tool in ArcToolbox. The imagery was then resampled 

using “Resample” to change the output cell size to 3.28 ft (1m) based on the work by Coffey 

2011 to use with the Feature Analyst extension.  The new feature class representing 

impervious surfaces was creating using heads-up digitizing by drawing polygons of 50 

    %𝑅𝑖𝑝𝑎𝑟𝑖𝑎𝑛 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 (1)

𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 (1) + 𝑁𝑜𝑛 − 𝑉𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑢𝑛𝑡 (0)
× 100 (3) 
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random impervious surfaces (parking lots, buildings, roads, homes). The 50 identified 

impervious surfaces were then used in conjunction with the “Supervised Learning” tool in 

Feature Analyst to create an algorithm that automatically detects impervious surfaces within 

the entire watershed. The Bull’s Eye 2 pattern was selected based on previous work by 

Coffey 2011 for its effectiveness at identifying impervious surfaces. The resulting shapefile 

from Feature Analyst identified the majority of impervious surfaces (Figure 8).  

 The impervious surface layer produced by Feature Analyst was far from perfect and 

the features needed to be manually edited to ensure accuracy. A fishnet grid was placed over 

the map and each grid was checked systematically to correct any missed or misidentified 

features (Figure 9). Once satisfied with each grid the color was changed to green and the next 

grid was corrected (Carlyle, 2013). Following corrections, the impervious surface polygons 

were converted to a raster using “Polygon to Raster” and were put into a binary format (0 = 

impervious; 1 = non-impervious). The percentage of impervious surface area for each 

individual sub-basin was calculated by masking the sub-basin of interest and using the 

following formula: 

                                                                                                                                  

  

 

Results 

 

Fish Collections and Condition Index 

In the USFNR watershed fish from the following species were collected during sampling: 

brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), rainbow trout (Oncorhynchus 

mykiss), mottled sculpin (Cottus bairdii), blacknose dace (Rhinichthys atratulus), creek chub 

𝐼𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠 % =  
𝐼𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠 (0)

𝐼𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠 (0)+𝑁𝑜𝑛−𝐼𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠 (1)
 x 100                               (4)   
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(Semotilus atromaculatus.), bluehead & bigmouth chub (Necomis spp.),  fantail darter 

(Etheostoma flabellare), central stoneroller (Campostoma anomalum), northern hogsucker 

(Hypentelium nigricans), rosyside dace (Clinostomus funduloides), white sucker (Catostomus 

commersonii), longnose dace (Rhinichthys cataractae), redbreast sunfish (Lepomis 

15uratus), green sunfish (Lepomis cyanellus), bluegill sunfish (Lepomis macrochirus), 

smallmouth bass (Micropterus dolomieu), silver shiner (Notropis photogenis), bluntnose 

minnow (Pimephales notatus), greenside darter (Etheostoma blennioides), Kanawha darter 

(Etheostoma kanawhae), New River shiner (Notropis scabriceps), rock bass (Ambloplites 

rupestris), and warpaint shiner (Luxilus coccogenis). In the spring, a total of 1,543 fish were 

collected, the summer total was 1,894 fish, and 3,437 were collected all together; the relative 

percentage of focal species and functional feeding groups (NCDENR, 2013) are described 

below in Table 4.  

  The majority of the captured trout were wild, naturalized fish with only a few being 

stocked as indicated by dull coloration and worn fins. Only the data from the focal species: 

brook trout, brown trout, rainbow trout, mottled sculpin, and blacknose dace was used for 

this study due to these species being listed as the primary occupants of cold-water trout 

streams in the southern Appalachian region (NCDENR, 2013).  

 To determine conditions for separate age classes amongst all sites, the Fulton 

Condition Factor was calculated and plotted against total length measurements for YOY and 

adult brown trout to identify sites with fish of noticeably reduced conditions among age 

classes of fish (Figure 10). Brook trout and rainbow trout were excluded from this analysis 

due to the limited number of individuals collected and sites with these species. Blacknose 

dace and mottled sculpin were also excluded due to low YOY data due to not making weight 
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on the field scale. The brown trout YOY and adults were mostly within similar conditions at 

every site, with the exception of a few adult brown trout from Winkler, Goshen, and East 

Fork. Overall, the results of the individual fish weight and length regressions and the plotted 

Fulton Condition Factors revealed similar conditions for assemblages of brown trout 

throughout the USFNR watershed, and even during times of predicted thermal stress, 

indicating no relationship between sub-basins water quality and fish condition.   

 The total length and weight measurements that were recorded during the fish 

collection process were used to create fish condition indices for brown trout, blacknose dace, 

and mottled sculpin during the summer which is a critical time for fish to store energy for the 

winter and when thermal stress was expected to be at its greatest. Brook trout and rainbow 

trout were excluded due to their absence from multiple sites and low collection numbers 

(brook trout: 2 sites, 18 total collected; rainbow trout: 5 sites, 21 total collected). The length 

and weight measurements were log transformed to normalize the data. A linear regression of 

the three species was tested individually for the summer sampling season using SigmaPlot 

v14.0 to reveal any relationships during a period of predicted thermal stress. Fish weights 

above 400g (2 brown trout) were excluded from these calculations due to the field scales 

inability to record a weight that exceeded 400g; fish with weights of 0.0g (23 blacknose dace 

and 34 mottled sculpin) were also excluded due to inaccurately reporting the data for small 

fish with weights that ranged between 0.0-0.1g.  

 The condition regressions for each summer tested species was significant, with strong 

R2 values indicating that the fish were similar in weight-length measurements across all 

sampling sites regardless of habitat conditions and water chemistry (Figure 11). The points 

that fell on the lower end of the weight at length spectrum were checked and verified to be 
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from different sites for each of the focal species ensuring that the fish were in similar 

condition regardless of the impact level of any of the streams (Figure 11). The Spearman 

Ranks Correlation was performed on brown trout (Salmo trutta), blacknose dace (Rhinichthys 

atratulus), and mottled sculpin (Cottus bairdi) of all age classes due to failing the Sharpiro-

Wilkes normality test. A positive correlation coefficient with a P-value of <0.001 resulted 

from every correlation test; indicating that fish weight and length tend to increase similarly at 

all sites regardless of habitat or water quality.   

 

Principle Components Analysis (PCA) 

 A two-dimensional, joint-plot Principle Components Analysis (PCA) was created in 

PC-ORD to graphically represent the multivariate data used in this study and establish 

potential patterns in the data collected during the spring and summer (Figure 12). The 

relative abundance of each individual cold-water species and combined cold-water species 

abundance was compared to all measured environmental variables (water quality, instream 

habitat, riparian density and height, impervious surface percent, and BEHI). The 

interpretation of these PCA biplots is dependent on the vector angles: acute angles indicate a 

direct relationship between variables, orthogonal angles indicate no relationship, and obtuse 

vector angles indicate an inverse relationship between variables (Borcard et al., 2018).  

 Based on the Eigenvalues, the first 2 principle components explain 71.21% of 

variation in the data for the spring collection and 63.9% of variation in summer collection 

data (Figure 12). Riparian height, pebble count, conductivity, impervious surface percent, 

and BEHI are the environmental variables that indicate potential relationships cold-water fish 

species and each other with one another in the USFNR in the spring, with addition of 
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temperature in the summer results. The comparison of spring collected total relative cold-

water species abundance to relevant environmental variables all showed an inverse 

relationship to conductivity, BEHI scores, and percentages of impervious surface but were 

directly related to riparian heights and pebble count scores which revealed that the relative 

abundances of cold-water fish were most impacted by the variables that contribute to habitat 

degradation. The relationships in the summer collection were similar to the spring results 

showing inverse relationships with conductivity, BEHI scores, and percentages of impervious 

surface with the addition of temperature and were directly related to riparian heights and 

pebble count scores (Figure 12). The inverse relationship with temperature in only the 

summer collection showed that more cold-water fish assembled in sites with colder water 

temperatures during the summer months when the water temperatures were greater compared 

to the spring.  

 The percent of impervious surfaces and BEHI scores showed a direct relationship to 

conductivity based on the acute angle of the vectors; this was expected because an increased 

percentage of impervious surface contributes to higher concentrations of conductivity 

combined with greater bank erosion that results from less dense riparian zones that do not 

adequately buffer contaminant runoff. Riparian height and pebble count scores also showed a 

direct relationship to each other which revealed that increased riparian height is improving 

the quality of the stream habitat by reducing the amount of fine substrate (Figure 12). The 

pebble count scores and riparian heights showed an inverse relationship compared to 

impervious surface percent, BEHI scores, and conductivity as indicated by the obtuse vector 

angles which suggested that better habitat with taller riparian zones and reduced 

sedimentation were opposed to degraded habitat with greater runoff potential (Figure 12). 
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Overall, the levels of conductivity were adequate representations of all-around habitat 

degradation.   

 In the summer collection, the Eigenvalues for the principle component 1 and 2 

explain 63.93% of the variation within the dataset. The same environmental variables from 

the spring are also revealed during this sampling season, with the addition of temperature 

(Figure 12). Similar trends outlined in the spring collection are also true for the summer. The 

percent of impervious surfaces and BEHI scores are showing a direct relationship to 

conductivity; riparian height and pebble count scores are also showing a direct relationship to 

each other. Pebble count scores and riparian heights are showing an inverse relationship 

when compared to impervious surface percent, BEHI scores, and conductivity. The main 

difference between the seasonal collections is the addition of temperature being revealed as 

an influential variable in the summer when the threat of thermal stress on cold-water fish was 

predicted to be greater. In the summer, temperature is showing an inverse relationship with 

riparian heights and pebble count scores and direct relationships with impervious surface 

percentages, BEHI scores, and conductivity. The relative abundances of cold-water fish are 

reacting to riparian heights, pebble count scores, impervious surface percentages, and BEHI 

scores in the same manner as the spring, however; an inverse relationship is revealed for 

cold-water fish and temperature in the summer.  

 

Modified Wolman Pebble Count & BEHI Scores  

 In the USFNR, the Modified Wolman Pebble Count scores ranged from good to 

marginal (Table 4). All the reference sites scored good; the moderately and highly impacted 

site scores ranged from good to marginal. The variance between pebble count scores within 
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the USFNR was analyzed using the Kruskal-Wallis one-way ANOVA on Ranks; the median 

values between Wolman Pebble Count scores in the 8 sub-basins were not statistically 

different (P = 0.081). Additionally, the D50 scores were calculated using the cumulative 

sediment distribution percentage to determine the particle size that 50% of the samples at 

each site are equal to or smaller than (Table 5).  

 The calculated D50 scores were compared to cold-water fish species and salmonid 

species in both spring and summer fish collections to determine any significant relationships. 

Since the particle sizes were categorized as sand (< 2 mm), gravel (3-64 mm), cobble (65-

255 m, and boulder (> 255 mm) instead of being measured individually, the D50 scores were 

numerically categorized according to Table 4. This conversion was done to make the scores 

usable for statistical analysis. In the spring collection the regression analyses of the substrate 

category were not significant for cold-water species (R2=0.200, P=0.082). The summer 

relationship was statistically significant (P = 0.048), but the relationship was not strong based 

on the R2=0.251 which reduces the ability to confidently describe D50 scores as an influential 

variable on the focal species within the USFNR watershed. However, the comparison of 

relative cold-water fish abundances to pebble count scores was significant for the spring (P = 

0.002) and summer (P = <0.001) with moderately strong R2 values (spring R2 = 0.515; 

summer R2 = 0.554) (Figure 13) that indicate that the percentage of cold-water fish within a 

sampling transect increases with pebble count scores, where the instream habitat contains a 

lower amount of fine particles.   

 The survey of the USFNR showed BEHI scores within the range low to high. All of 

the reference sites scored in the good category, the intermediate sub-basins ranged from good 

to moderate, and the poor sub-basins ranged from moderate to high erosion hazard levels 
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(Figure 14). The variance between BEHI scores within the USFNR was analyzed using the 

Kruskal-Wallis one-way ANOVA on Ranks; the median values between BEHI scores in the 

8 sub-basins were not statistically different (P = 0.077) at this time. Although the difference 

was not statistically significant (P > 0.05), it was close and future policies need to maintain or 

improve bank stability conditions to prevent greater levels of erosions impact in the future.  

 Relative cold-water fish abundances were compared to BEHI scores using linear 

regression and this relationship was statistically significant for the spring and summer, both 

with P-values of 0.034 and R2 values of 0.282. The strength of this inverse relationship  

shows abundances of cold-water species increasing with lower BEHI scores; indicating that 

cold-water fish prefer stream habitat with less bank erosion. Although the R2 values for the 

BEHI scores are not very strong, significance makes sense given the relationship between 

cold-water fish and pebble count scores because bank erosion directly influences the amount 

of fine substrate in a stream. To ensure the pebble count and BEHI scores were interacting, a 

regression analysis of the two was performed. This comparison revealed that BEHI and 

pebble count scores had a negative relationship (R2 = 0.64, P = <0.001) that indicated as the 

pebble count score decreases the BEHI score increases, which is expected since bank erosion 

directly contributes to stream sedimentation (Figure 15). This significant regression also 

reinforces the inverse relationship that was revealed by the PCA analysis.  

 

Water Chemistry 

 The median monthly water temperature during the spring fish collections ranged from 

14.3-16.6 °C depending on the sub-basin (Figure 16). Goshen Creek had the coldest median 

temperatures and State Farm had the warmest. The monthly high and low temperatures for 
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the spring ranged from: Goshen (8.6-17.7°C), Flannery Fork (9.8-20.8°C), Winkler Creek 

(9.6-21.3°C), East Fork (9.0-21.8°C), Middle Fork (9.5-21.6°C), State Farm (9.5-22.5°C), 

Hodges Creek (9.4-20.6°C), and Boone Creek (10.3-21.5°C).  

 During the summer fish collections, the median monthly water temperature ranged 

from 16.7-19.1°C; where Goshen Creek remained the coolest and State Farm remained the 

warmest (Figure 15). The Dunn’s Method comparison showed that these temperatures were 

statistically warmer compared to the spring based on P-values greater than 0.05. The monthly 

high and low temperatures for the summer ranged from: Goshen (13.5-18.5°C), Flannery 

Fork (15.3-21.6°C), Winkler Creek (15.1-22.0°C), East Fork (13.9-22.3°C), Middle Fork 

(14.2-22.2°C), State Farm (14.5-23.2°C), Hodges Creek (13.8-22.4°C), and Boone Creek 

(16.2-23.8°C).  

 For the summer collection the mean, greatest length of time, and percentage of the 

month that temperatures met or exceeded thermal stress for salmonids (20°C and above) for 

each sub-basin was determined. Goshen creek was the only sub-basin that did not exceed this 

temperature at any point in time during the summer collection month and Hodge’s Creek did 

exceed the thermal stress temperature for a short duration (mean: 3.82 hours; longest 

duration: 6.75 hours) 35.48% of the days during the collection month (Table 6). The 

remaining sub-basins had temperature exceedances for more than 50% of the days in the 

collection month and the pulse temperatures stayed elevated for a longer duration with means 

ranging from 5.03-10.01 hours (Table 6).  

 

The results of the relative abundances of cold-water fish species compared to median 

water temperature during the spring collection was not significant (R2 = 0.164; P = 0.120), 

however, the summer collection was significant (P = 0.012) with a moderately strong R2 
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value of 0.375 as shown by the linear regression analyses (Figure 17). These results reflect 

the relationships that were revealed by the PCA analysis which suggested that the percentage 

of cold-water fish abundances decreases as water temperature increases in the summer 

months. Alternately, the relative abundance of cool/warm water specialists did increase with 

temperature (R2 = 0.382) which means that temperature may not be the only driver for cold-

water species in the summer, increased competition between generalists and cold-water 

species may also influence the reduction of cold-water species in a site with warmer summer 

temperatures.  

 Individual species from the spring and summer were also compared to water 

temperature with statistically insignificant results. The coefficients of variation for the spring 

collection were: blacknose dace (R2 = 0.007) and brown trout (R2 = 0.001). The coefficients 

of variation for the summer collection were: blacknose dace (R2 = 0.051) and brown trout (R2 

= 0.059). Water temperature was reducing overall cold-water fish numbers during the 

summer, but it was not affecting the distribution of any of the individual cold-water species. 

Regressions for brook trout, rainbow trout, and mottled sculpin were not used due to the lack 

of data for these species between sites.  

 The median monthly specific conductivity during spring fish collections ranged from 

26.5-370.8 µS/cm depending on the sub-basin (Figure 18). The monthly high and low 

conductivity values for the spring ranged from: Goshen (13.5-40.2 µS/cm), Flannery Fork 

(19.0-38.2 µS/cm), Winkler Creek (16.4-34.2 µS/cm), East Fork (10.7-88.0 µS/cm), Middle 

Fork (33.2-96.7 µS/cm), State Farm (29.3-291.2 µS/cm), Hodges Creek (26.3-584.0 µS/cm), 

and Boone Creek (30.9-507.4 µS/cm). The median monthly specific conductivity during the 

summer fish collections had similar concentrations compared to the spring ranging from 
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34.6-319.1 µS/cm (Figure 18). Boone and Hodges Creeks held the highest concentrations 

during both the spring and summer collections. Winkler Creek had the lowest conductance in 

the spring and Flannery Fork had the lowest conductance in the summer. The monthly high 

and low conductivity values for the summer ranged from: Goshen (24.7-59.2 µS/cm), 

Flannery Fork (28.4-43.2 µS/cm), Winkler Creek (30.8-39.5 µS/cm), East Fork (28.9-119.5 

µS/cm), Middle Fork (50.8-99.7 µS/cm), State Farm (50.5-185.4 µS/cm), Hodges Creek 

(42.0-219.6 µS/cm), and Boone Creek (18.6-501.2 µS/cm). 

 The spring cold-water fish species were compared to specific conductivity 

concentrations using a Spearman Correlation and linear regression with insignificant results 

(P = 0.170) (Figure 19). The relationship of individual species to conductivity was also 

statistically insignificant: blacknose dace (P = 0.131) and brown trout (P = 0.115). The 

summer results comparing relative abundances of cold-water fish to conductivity were also 

statistically insignificant (P = 0.134) (Figure 19). As was shown for the spring, the 

comparison of individual species to conductivity for the summer collections was also 

insignificant: blacknose dace (P = 0.059) and brown trout (P = 0.052). A positive correlation 

was expected between blacknose dace and conductivity for both sampling seasons per the 

PCA analysis results; this emphasizes the importance of additional statistical testing 

following a PCA analysis (Figure 12). Regressions for brook trout, rainbow trout, and 

mottled sculpin during both spring and summer were not used due to the lack of data for 

these species between sites. Conductivity, at least at the levels measured here, was not an 

influential variable on cold-water fish assemblages in the USFNR watershed.   
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Geographic Information System (GIS) Mapping 

 The calculated average riparian heights throughout the 150-m sampling transects 

ranged between 4.5-45.2 feet (Table 7). The reference sub-basins (Goshen, Flannery, 

Winkler) had noticeably taller vegetation (24.7-45.2 ft); the moderately (4.5-21.7ft) and 

highly impacted (5.8-12.8ft) sites were all under 22 ft. When the average riparian heights 

were compared to summer temperatures the relationship was poor (R2 = 0.050) and the 

Pearson Correlation was not significant (P = 0.385) (Figure 19). However, when the heights 

were compared to conductivity the Pearson Correlation was significant (P = 0.013) and 

moderately strong with an R2 of 0.369 (Figure 20).  

 The average riparian density percentages in the sampling transects ranged between 

48.4-99.3% and there was not a comparable trend between sub-basin impact levels and the 

amount of vegetation within the 150-m sections (Table 6). The riparian categories ranged 

from poor to good, however, the reference sites did all score in the good category with 

percentages above 90% (Table 6). When the riparian density was compared to summer 

temperature using Pearson Correlation the regression was not significant (P = 0.321), 

however, when compared to conductivity the relationship was significant (P = 0.016) with an 

R2 of 0.347 (Figure 21).  

  The percentage of impervious surfaces was calculated on a sub-basin level. The 

moderately impacted site State Farm (29.4%) had the highest percentage of impervious 

surfaces, followed by the highly impacted sub-basins Boone Creek (24.3%) and Hodge’s 

Creek (14.4%); each reference site was under 5.0% (Figure 22). An accuracy assessment was 

performed in ArcMap by randomly generating 100 points and comparing the random points 

to their individual classification (0 = impervious; 1 = non-impervious) and ground truth 
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within a 10-meter buffered layer of impervious surfaces. The resulting Confusion Matrix 

produced an overall accuracy percentage of 94.00% and a Kappa statistic of 85.98% which is 

very strong. The producer’s accuracy for impervious classifications was 97.06% with 2.94% 

omission error and the user’s accuracy was 94.29% with 5.71% commission error. The 

producer’s accuracy for non-impervious classifications was 87.50% with 12.50% omission 

error and the user’s accuracy was 93.33% with 6.67% commission error. This strengthens the 

results of the imperious surface layer because the impervious and non-impervious structures 

were overall correctly identified.  

 The percent of impervious surfaces was compared to the levels of conductivity within 

each sub-basin to determine the potential for run-off of contaminants that enter the waterway. 

The results of this regression were highly significant. The initial regression with all sub-

basins included had a relatively strong R2 value of 0.526, with an obvious outlier from the 

State Farm sub-basin (Figure 23). This outlier can be explained because State Farm is not 

only a larger order stream with a greater volume of water, it is also the site that represents the 

USFNR outlet, therefore all of the other sub-basins flow into it, which dilutes the 

conductivity (Table 1).  The removal of the State Farm outlier produced a very strong 

regression (R2 = 0.972) (Figure 23).  

Lastly, the riparian density percentages, riparian heights, and percent of impervious 

surfaces were compared to relative cold-water fish abundances to determine any relationships 

using Spearman Rank Correlations and linear regressions. There was not a significant 

relationship between cold-water fish assemblages compared to riparian density in the spring 

(P = 0.183) or summer (P = 0.135). On the other hand, the relationship between cold-water 

fish and average riparian heights per sampling area was significant for the spring (P = 0.006) 
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and summer (P = 0.002) showing that the percent of cold-water fish does increase in sites 

with taller riparian vegetation (Figure 24).  

 The relationship between relative cold-water species abundance and sub-basin wide 

percentages of impervious surfaces was also significant in the spring (P = 0.004) and summer 

(P = 0.002) showing that cold-water fish negatively respond to increased amounts of 

impervious surface in the sub-basin (Figure 25).  

 

Discussion 

 

The purpose of this study was to identify the biogeophysical components that impact the 

cold-water fish assemblages within the USFNR watershed that uniquely contains headwater 

streams that are exposed to varying sub-basin habitats ranging from heavily urbanized areas 

with concentrated impervious surfaces to highly forested sub-basins that are protected by the 

Blue Ridge Parkway.  

 

PCA Relationships 

The PCA analysis looked for potential relationships between relative cold-water fish 

abundances and environmental variables with only relevant relationships being revealed. 

Riparian height, pebble count, conductivity, impervious surface percent, and BEHI were the 

variables that influence habitat quality and indicated potential relationships compared to 

cold-water fish species and each other in the USFNR, with addition of temperature in the 

summer results. In general, greater impervious surface percentage means that there is limited 

vegetation which directly contributes to an increased potential for contaminant runoff into the 

stream; the reduced vegetation also weakens the buffering capacity for conductivity, reduces 
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shad and filtering of solar energy inputs, and fails to stabilize the banks. These inverse 

relationships suggested that the amount of cold-water fish increased in sites with colder 

water, less bank erosion, lower conductivity, and less impervious surface within the sub-

basin. Additionally, greater riparian heights and better pebble count scores represent 

preferred habitat and the amount of cold-water fish did increase in response to these factors.  

 

Riparian Corridors 

 The average riparian heights and densities did differ between sampling transects but 

did not have the thermal buffering impacts that were predicted on stream temperatures. This 

may be due to differences in land-use above the catchment points were the water quality 

sensors were collecting data. The Flannery Fork sub-basin was a reference site with tallest 

vegetation and riparian density above 95%, but it also had the second highest median water 

temperature during the summer compared to sites with poor vegetation. This warmer 

temperature may stem from the 16-acre Trout Lake, which is a shallow impoundment 

upstream from the sampling sites in Flannery Fork (Lord, 1981). Furthermore, a study by 

Poole & Berman (2001) listed phreatic ground water as high importance in the stabilization 

of stream temperatures in stream orders 1 & 2 and moderate importance in stream orders 3 & 

4. Subsequent studies have also reported that riparian zones may have minimal effect on 

headwater streams due to groundwater inputs that stabilize the temperature (Cross et al., 

2013; Rutherford et al., 2004).  
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Thermal Suitability 

The monthly maximum temperature did surpass thermal limits (20.0-22.5 °C) for the 

salmonid species in 14 out 16 sites during the summer collections and cold-water abundances 

were lessened in response to temperature increases (Baldwin, 1957; Carlson et al., 2017; 

Coutant, 1977; Elliot & Hurley, 2000; Wurtsbaugh & Davis, 1977). These temperature 

exceedances occurred over half of the days during the collection month in 6 out of 8 sites 

with the longest duration of temperature pulses ranging between 6.75-14.25 hours depending 

on the sub-basin. Thermal stress is known to affect the metabolic rates of cold-water fish 

resulting in reduced growth. The condition regressions that compared weight and length 

values for individual species revealed similar conditions in every species at every site despite 

the range of observed temperatures. Additionally, the plotted Fulton’s condition factors for 

YOY and adult brown trout revealed similar fish conditions at every site despite variability in 

temperature, conductivity, instream habitat, and riparian vegetation. The YOY were expected 

to be particularly impacted due to their inability to seek thermal refuge like the adults with 

strong swimming ability. The similar fish conditions can be explained by the lab-to-field 

dilemma. There has been an abundance of studies that focus on pinpointing the thermal 

tolerances of individual salmonid species, but the majority of these studies are short-term 

lethal limit, laboratory conducted experiments that do not necessarily reflect real ecological 

scenarios of sub-lethal, long term effects on metabolism and growth (Selong et al., 2001). 

Streams naturally have daily temperature fluctuations that most laboratory experiments fail to 

account for, instead most studies use constant temperatures or increase temperatures in a 

rapid manner to determine the critical thermal maximum limit (Wehrly et al., 2007).  It was 

also found that the trout were largely found in temperatures that exceeded 26.0°C and could 
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tolerate temperatures that exceeded the recommended criteria for short periods of time (≤ 7 

days) because the cold-water fish have adapted to cycling temperatures near the upper 

tolerances; this can cause stress to the fish but does not necessarily limit their persistence 

(Wehrly et al., 2007). The maximum monthly temperatures did not reach 26°C at any time 

and the longest duration of elevated temperature was 14.25 hours in the USFNR watershed; 

water temperature was not high enough to cause significant stress or mortality. Although 

similar weight-length conditions were found between sites, the relative abundance of cold-

water fish did decrease as temperatures increased. This could be due to the cold-water fish 

preferring lower temperatures or could be caused by the increased abundance of cool or 

warm water generalist species that compete for resources. 

 

Conductivity 

 The median concentrations of specific conductivity were very different depending on 

the impact level of the sub-basin conditions. When these levels were compared to sampling 

transect riparian densities and heights the results were significant, but the R2 values were not 

very strong indicating a weak correlation between riparian corridors of our sampling reaches 

and conductivity. It was also revealed that the height and density values are not dependent on 

each other because a transect can have high density vegetation that is not great in height 

(shrubs, tall grasses, etc.). The weak correlation is a result of the 150-m sampling transects 

failing to buffer out run-off contamination that occur upstream. Once conductivity was 

compared to the percentage of impervious surfaces on a sub-basin level, the relationship was 

very strong. The initially tested linear regression that compared conductivity and impervious 

surfaces for all sub-basins had a moderately strong relationship, with one obvious outlier. 
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This outlier was attributed to the State Farm sub-basin which had the highest percentage of 

impervious surfaces with only moderate concentrations of conductivity. This can be 

explained by the dilution paradigm “the solution to pollution is dilution” because State Farm 

is not only a larger order stream with a greater volume of water, it is also the outlet of the 

USFNR. When the linear regression was re-analyzed with the State Farm outlier removed the 

relationship was very strong (R2 = 0.972) signifying that increases in impervious surfaces is a 

driver for higher concentrations of conductivity.  

 Conductivity was not an influential variable on cold-water assemblages or individual 

species during the spring or summer. Blacknose dace and brown trout are listed as 

intermediately tolerant to environmental pollution compared to intolerant rainbow trout or 

brook trout and were commonly found in higher levels of conductivity, but a significant 

relationship was not revealed in this study (NCDENR, 2013). The limited data for brook 

trout and rainbow trout that was collected in the USFNR headwaters makes it difficult to 

conclude whether environmental contaminants or physical barriers (weir dams, underground 

or clogged conduits) were limiting their prevalence in multiple sub-basins or if pressure from 

the more competitive brown trout were causing these limitations. Brown trout can 

outcompete other salmonids because they become piscivorous while brook trout and rainbow 

trout are mostly insectivorous. This can expand their range during periods of low 

productivity when terrestrial insects are less abundant. Observationally, brook trout and 

rainbow trout were also absent from Flannery Fork and Winkler sub-basins which maintain 

similar suitable conditions. Mottled sculpin are in the same tolerance class as blacknose dace 

and brown trout, but they were noticeably absent from accessible sub-basins with high 

concentrations of conductivity (Boone Creek and Hodge’s Creek). The mottled sculpin were 
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also absent from low conductivity sub-basin headwaters sites (Winkler Creek and Flannery 

Fork) but there is a Town of Boone water supply weir dam that physically blocks access to 

these sites and could explain their absence; unpublished data from the Ecotoxicology course 

taught by Dr. Shea Tuberty at Appalachian State University did find mottled sculpin at sites 

downstream of this barrier. 

 Overall, it was determined that water quality chemistry was not reducing the 

conditions of cold-water fish in the USFNR, but physical habitat conditions and summer 

temperatures were limiting distribution. Increased riparian height did not effectively reduce 

water temperature or runoff, but it did increase the percentage of cold-water fish found at 

those sites. Similarly, the amount of cold-water fish also increased in the presence of lower 

percentages of impervious surfaces within each sub-basin. The quality of bank and instream 

habitat also affected the abundances of cold-water species. The focal species negatively 

responded to increased stream bank erosion and benthic sedimentation.  

 

Conclusions 

The main focus of this study was to assess the cold-water fish species and determine which 

environmental and chemical variables were impacting the assemblages. The stream 

temperatures were not effectively buffered by riparian densities or heights within the transect 

zones, however, two of the sub-basins (Winkler Creek and Flannery Fork) were confounded 

by large upstream impoundments that may reduce the strength of this result. The amount of 

conductivity was effectively reduced compared to riparian corridors, but this correlation was 

much stronger using the comparison of impervious surfaces to conductivity on a sub-basin 

level because this accounts for the upstream runoff that is not included within the 150-m 
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riparian corridor transects. The amount of impervious surface directly impacts the ability of 

contaminant run-off to enter a waterway. This highlights the importance of limiting any 

increasing impervious surfaces within the USFNR.  

 The ineffectiveness of the riparian corridors to reduce temperature may be attributed 

to differences in land-cover above the catchment points or ground-water inputs that create 

stability. Temperature over the range observed was not found to be an influential variable in 

the condition of cold-water fish species in the USFNR and the limited range of native brook 

trout and introduced rainbow trout is most likely attributed to competition with introduced 

brown trout. Conductivity may also reduce brook trout and rainbow trout prevalence, but the 

limited data that was collected for these species during this study is not enough to draw any 

conclusions. Rainbow trout and brook trout are insectivores and conductivity may be 

indirectly driving assemblages; previous research by Fleetwood, 2017 found that aquatic 

macroinvertebrates react negatively to increased conductivity. A field study by the 

Environmental Protection Agency (EPA) reinforces this by listing the freshwater aquatic life 

benchmark for invertebrate genera in Central Appalachian streams at 300µS/cm (EPA, 

2011). The collection of rainbow trout and brook trout from additional sites is needed to 

determine if conductivity is a driving factor. Nevertheless, this study does produce valuable 

insight for future work. It is rare for sustainable assemblages of naturalized trout in multiple 

year classes to be found in headwater streams that are nestled within a unique watershed with 

sub-basins that are exposed to vastly different habitats that range from heavily urbanized 

areas as well as the highly forested and federally protected Blue Ridge Parkway.  

 Although water temperature was revealed by the PCA as an important factor in only 

the summer collection for distribution, it was not found to influence cold-water fish 
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conditions over the observed range of temperatures, however; physical habitat factors (stream 

bank erosion, benthic substrate, riparian forest cover height, and impervious surfaces) did 

influence cold-water fish distributions throughout the USFNR. The assemblages of cold-

water fish increased with quality bank and instream habitat which emphasizes the importance 

for state and local agencies to continue to preserve or improve habitat conditions to maintain 

or restore cold-water species persistence. Subsequently, taking steps to protect these streams 

from the factors that degrade physical habitat will also aid in the conservation of cold-water 

assemblages in the future when climate change is predicted to increase thermal stress further.  
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Tables and Figures 

 

 

Table 1 Table listing the sub-basin, impact rating, and geographical coordinates of each 

sampling site. 

SITE Sub-Basin Stream Order Impact Level Latitude Longitude 

GC-DC Goshen 3 Reference 36.181325 -81.609645 
GC-SD Goshen 3 Reference 36.183335 -81.610669 
WC-PP Winkler 2 Reference 36.184894 -81.678041 
WC-SD Winkler 2 Reference 36.195532 -81.678162 
FF-SD Flannery 2 Reference 36.182521 -81.686798 
FF-HS Flannery 2 Reference 36.182746 -81.686762 
MF-TW Middle Fork 3 Moderate 36.167766 -81.647322 
MF-KT Middle Fork 3 Moderate 36.193784 -81.651123 
EF-BR East Fork 3 Moderate 36.192753 -81.635206 
EF-SD East Fork 3 Moderate 36.202627 -81.648967 
SF-TW State Farm 5 Moderate 36.201961 -81.652219 
SF-SD State Farm 5 Moderate 36.208869 -81.654515 
HC-SB Hodges 2 Highly  36.202721 -81.672287 
HC-SD Hodges 2 Highly  36.202347 -81.66999 
BC-SD Boone 3 Highly 36.211889 -81.678211 
BC-AMB Boone 3 Highly 36.204572 -81.669213 

*Reference = low conductivity; moderate = intermediate conductivity; highly = high 

conductivity 

 

 

 

Table 2 Table listing Bank Erosion Hazard Index (BEHI) categories and scores used to rank 

the erodibility of a stream bank. 

BEHI 
Category 

Root 
Depth 

RDH 
Score 

Root 
Density 

RD 
Score 

Surface 
Protection 

SP 
Score 

Bank 
Angle 

BA 
Score 

Very Low 90 - 100 1 80 - 100 1 80 - 100 1 0 - 20 1 
Low 50 - 89 3 55 - 79 3 55 - 79 3 21 - 60 3 
Moderate 30 - 49 5 30 - 54 5 30 - 54 5 61 - 80 5 
High 15 - 29 7 15 - 29 7 15 - 29 7 81 - 90 7 
Very High 5 - 14 8.5 5 - 14 8.5 10 - 14 8.5 91 - 119 8.5 
Extreme < 5 10 < 5 10 < 14 10 > 119 10 

*Combined BEHI Scores: ≤ 6 = Very Low; 6-12 = Low; 13-20 = Moderate; 21-28 = High; 

29-34 = Very High; > 34 = Extreme 
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Table 3 Location of Eureka Manta 20+ and Trimeter water quality sondes in the USFNR 

headwater streams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stream Name Sensor Type Latitude (N) Longitude (W) 

Boone Creek Eureka Manta 20+ 36° 12’42.7 81° 40’34.0 
East Fork Eureka Manta 20+ 36°12’08.5 81°38’54.6 
Flannery Fork Eureka Manta 20+ 36°11’05.7 81°40’41.6 
Goshen Creek Eureka Manta 20+ 36°11’00.5 81°36’38.5 
Hodges Creek Eureka Trimeter 36°12’08.5 81°40’12.1 
Middle Fork Eureka Manta 20+ 36°11’29.2 81°39’18.2 
State Farm Eureka Manta 20+ 36°12’30.7 81°39’12.5 
Winkler Creek Eureka Trimeter 36°11’43.2 81°40’51.8 
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Table 4 Breakdown of relative percent focal species abundance and relative percentages of 

functional feeding groups by sampling site for spring and summer collections (GC/FF/WC = 

reference; EF/MF/SF = moderately impacted; HC/BC = highly impacted). 

 

Spring 
Sites 

Relative % Focal 
Species Abundance 

% 
Insectivore 

% 
Herbivore 

% 
Piscivore 

% 
Omnivore 

GC-DC 100.00 52.94 0.00 47.06 0.00 
GC-SD 99.07 67.59 0.00 32.41 0.00 
FF-SD 68.75 46.88 0.00 53.13 0.00 
FF-HS 100.00 15.15 0.00 84.85 0.00 
WC-PP 45.45 90.91 0.00 9.09 0.00 
WC-SD 87.36 60.92 0.00 39.08 0.00 
EF-SD 32.28 89.76 8.66 1.57 0.00 
EF-BR 37.16 77.03 15.54 4.73 2.70 
MF-TW 54.49 65.27 25.15 9.58 0.00 
MF-KT 26.50 69.23 22.22 4.27 4.27 
SF-TW 2.38 60.00 21.25 17.50 1.25 
SF-SD 22.53 78.57 17.03 2.75 1.65 
HC-SB 60.87 60.87 1.45 33.33 4.35 
HC-SD 38.71 54.84 30.65 11.29 3.23 
BC-SD 48.45 51.55 45.36 0.00 3.09 
BC-AMB 31.07 65.05 29.61 4.85 0.49 

 

Summer 
Sites 

Relative % Focal 
Species Abundance 

% 
Insectivore 

% 
Herbivore 

% 
Piscivore 

% 
Omnivore 

GC-DC 100.00 28.57 0.00 71.43 0.00 
GC-SD 83.61 81.15 0.00 18.85 0.00 
FF-SD 76.27 45.76 0.00 54.24 0.00 
FF-HS 83.67 26.53 0.00 73.47 0.00 
WC-PP 63.89 91.67 0.00 8.33 0.00 
WC-SD 82.19 60.27 0.00 39.73 0.00 
EF-SD 59.57 83.51 4.79 11.70 0.00 
EF-BR 26.79 63.64 21.53 9.57 5.26 
MF-TW 49.18 59.84 27.87 12.30 0.00 
MF-KT 39.66 74.30 18.44 7.26 0.00 
SF-TW 15.01 73.37 20.40 4.53 1.70 
SF-SD 21.39 80.92 17.34 1.73 0.00 
HC-SB 65.66 66.67 1.01 30.30 2.02 
HC-SD 65.08 88.89 1.59 7.94 1.59 
BC-SD 63.25 75.21 24.79 0.00 0.00 
BC-AMB 19.35 77.42 12.90 0.00 9.68 
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Table 5 Table listing the Wolman Pebble Count scores (PC Score), category (PC Category), 

and D50 values by site and sub-basin 

SITE NAME Sub-Basin PC Score PC Category D50 D50 Category 

MF-KT Middle Fork 3.73 Good 3-64 mm 2 
MF-TW Middle Fork 3.39 Good 3-64 mm 2 
HC-SD Hodge’s Creek 2.81 Marginal 0.62-2 mm 1 
HC-SB Hodge’s Creek 2.98 Marginal 0.62-2 mm 1 
BC-SD Boone Creek 3.42 Good 3-64 mm 2 
BC-AMB Boone Creek 2.84 Marginal 0.62-2 mm 1 
WC-PP Winkler Creek 3.69 Good 3-64 mm 2 
WC-SD Winkler Creek 3.69 Good 3-64 mm 2 
FF-SD Flannery Fork 3.99 Good 3-64 mm 2 
FF-HS Flannery Fork 3.77 Good 3-64 mm 2 
EF-BR East Fork 2.67 Marginal 0.62-2 mm 1 
EF-SD East Fork 3.22 Good 3-64 mm 2 
GC-SD Goshen Creek 3.93 Good 3-64 mm 2 
GC-DC Goshen Creek 3.83 Good 3-64 mm 2 
SF-SD State Farm 3.01 Good 3-64 mm 2 
SF-TW State Farm 2.68 Marginal 0.62-2 mm 1 

* D50 scores categorized as: 0.62-2mm = 1; 3-64mm = 2; 65-255mm = 3; 256-1096mm = 4 

 

 

Table 6 List of individual sub-basins and the mean time (hrs), greatest time (hrs), and 

percentage of the month that water temperatures exceeded 20°C. 

Sub-Basin 
Mean Time (hrs) 

above 20°C 
Greatest Time (hrs) 

above 20°C 
% of Month 

Goshen Creek 0.00 0.00 0.00 
Flannery Fork 9.54 13.50 58.06 
Winkler Creek 5.03 7.50 51.61 
East Fork 8.56 11.25 58.06 
Middle Fork 7.65 12.75 67.74 
State Farm 10.01 14.25 77.42 
Hodge’s Creek 3.82 6.75 35.48 
Boone Creek 5.83 9.25 67.74 
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Table 7 Comparison of average riparian height (ft), average density percentages, and 

categories for each 150-m sampling transect within USFNR watershed. GC/FF/WC = 

reference; EF/MF/SF = moderately impacted sub-basin; HC/BC = highly impacted sub-basin. 

Site Riparian Height Riparian % Riparian Category 

GC-DC 31.4 99.3 Good 
GC-SD 31.8 90.8 Good 
FF-SD 45.2 96.8 Good 
FF-HS 37.7 95.2 Good 
WC-PP 34.6 98.5 Good 
WC-SD 24.7 71.5 Fair 
EF-SD 16.7 63.7 Fair 
EF-BR 4.5 75.2 Fair 
MF-TW 5.7 84.1 Good 
MF-KT 21.7 98.2 Good 
SF-TW 7.9 77.2 Fair 
SF-SD 9.6 80.1 Good 
HC-SB 12.8 89.5 Good 
HC-SD 15.8 94.0 Good 
BC-SD 5.8 48.4 Poor 
BC-AMB 10.4 59.7 Fair 
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Fig. 1 Map showing the Upper South Fork New River watershed and associated sub-basins 

in Watauga County, NC. 
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Fig. 2 Hillshade representation of the vegetation layer of the 2018 LiDAR-Geiger data at 

HC-SD sampling site, adjacent to the Boone Mall parking lot in Watauga County, NC. 

 

 

Fig. 3 ArcMap figure of the connected multipoints drawn every 10-meters that form the 

polygon features that represent riparian corridor buffers within the sampling transect. 
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Fig. 4 Result of the Feature to Raster tool which converted each of the created polygon 

features into rasters that can be used to calculate riparian height and density statistics within 

the sampling areas. Here is one of the transects on Boone Cr on the ASU campus. 

 

 

Fig. 5 Left-.LAS Point Statistics as Raster for vegetation layer; right-.LAS Point Statistics as 

Raster for bare-earth layer. 
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Fig. 6 Model of canopy density; darker areas indicate higher vegetative density values. 
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Fig. 7 Minus tool (top) and Raster Calculator (bottom) in ArcMap 10.5; calculates the 

differences in height between LiDar-Geiger vegetation layers and LiDar-Geiger bare-earth 

layers. 
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Fig. 8 Resulting impervious surface layer created using Supervised Learning tool in the 

Feature Analyst extension; pink polygons indicate impervious surfaces that were identified 

using the initial learning algorithm. 

 

 

Fig. 9 Examples of missed or misidentified features that were corrected from the Feature 

Analyst output shapefile during the manual editing process. Brown and red roofs were often 

missed (yellow boxes show missed features) and portions of field were misidentified as 

impervious surface. 
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Fig. 10 Plotted Fulton Condition Factor (K) and total length (cm) for YOY and adult brown 

trout during summer collections; points are color-coded by sub-basin to determine condition 

patterns. 
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Summer Brown Trout Condition

Log Length (mm)
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Summer Mottled Sculpin Condition
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Fig. 11 Regression comparison of log weight (g) and length (mm) measurements for the 

summer fish collection to determine fish conditions between cold-water species; blue line 

indicates 95% predicted values and pink line represents the 95% confidence interval (P= < 

0.001 all regressions). 

R2 =  0.986 

R2 =  0.850 
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Summer Blacknose Dace Condition

Log Length (mm)

1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1

L
o

g
 W

e
ig

h
t 

(g
)

-1.0

-0.5

0.0

0.5

1.0

1.5

 

Fig. 11 Continued Regression comparison of log weight (g) and length (mm) measurements 

for the summer fish collection to determine fish conditions between cold-water species; blue 

line indicates 95% predicted values and pink line represents the 95% confidence interval (P= 

< 0.001 all regressions). 

 

 

 

R2 =  0.888 
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Fig. 12 Joint-Plot Principle Components Analysis (PCA); of Spring and Summer collections; 

Spring PCA accounts for 71.21% of variation within the dataset and the Summer accounts 

for 63.93%; triangles represent study sites, blue vector lines represent fish species, and red 

vector lines represent relevant environmental variables. 
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Spring Cold-Water Fish vs Pebble Count

Relative % Spring Cold-Water Fish Abundance
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Summer Cold-Water Fish vs Pebble Count

Relative % Summer Cold-Water Fish Abundance
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Fig. 13 Regression analysis of the Wolman Pebble Count Scores compared to the relative 

percentage of cold-water fish abundances for the spring (top; P = 0.002) and summer 

(bottom; P ≤ 0.001) collection; dashed blue line represents 95% confidence interval and pink 

line represents 95% predicted values. 

R2 =  0.515 

R2 =  0.554 
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Fig. 14 Graphical representation of the mean Bank Erosion Hazard Index (BEHI) scores ± 

1SD at each site within the Upper South Fork New River (USFNR) watershed; green bars 

represent low, yellow bars represent moderate, and red bar represents high potential for 

stream bank erosion. 
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BEHI vs Pebble Count
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Fig. 15 Regression comparison of Wolman Pebble Count scores and Bank Erosion Hazard 

Index (BEHI) scores; blue line represents 95% confidence interval and red line represents 

95% predicted values (P ≤ 0.001). 

 

R2 =  0.64 
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Fig. 16 Median monthly water temperatures for each sub-basin within the Upper South Fork 

New River (USFNR) watershed for 2018 and 2019. 
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Spring Temperature vs Relative % 

Cold-Water Species
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Summer Temperature vs Relative % 

Cold-Water Species
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Fig. 17 Linear regression of relative percentage of cold-water species abundance compared 

to median water temperatures for both spring (top; P = 0.120) and summer (bottom; P = 

0.012) collections; red line indicates 95% predicted values; blue line represents 95% 

confidence interval; black line indicates regression. 

R2 =  0.164 

R2 =  0.375 
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Fig. 18 Median monthly specific conductivity values for each sub-basin within the Upper 

South Fork New River (USFNR) watershed for 2018 and 2019. 
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Spring Cold-Water Fish vs Conductivity

Relative % Abundance Cold-Water Species
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Summer Cold-Water Fish vs Conductivity

Relative % Abundance Cold-Water Species
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Fig. 19 Regression analysis of relevant abundances of cold-water fish species compared to 

concentrations of specific conductivity (µS/cm) during spring (top; P = 0.170) and summer 

(bottom; P = 0.134) collections. Red line indicates 95% predicted values; blue line indicates 

95% confidence interval; black line represents regression. 

R2 =  0.130 

R2 =  0.153 
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Riparian Height vs Summer Temperature
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Riparian Height vs Summer Conductivity

Specific Conductivity uS/cm
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Fig. 20 Top: regression of riparian height (ft) compared to median summer temperatures (°C) 

(P = 0.385); bottom: regression of riparian height (ft) compared to median specific 

conductivity (µS/cm) (P = 0.013).  

 

R2 =  0.050 

R2 =  0.369 
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Riparian Density vs Summer Temperature
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Riparian Density vs Summer Conductivity

Specific Conductivity uS/cm
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Fig. 21 Top: riparian density (%) compared to median summer temperature (°C) (P = 0.321); 

bottom: riparian density (%) compared to median specific conductivity (µS/cm) values (P = 

0.016). 

R2 =  0.070 

R2 =  0.347 
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Fig. 22 Impervious surfaces land-cover map of the USFNR watershed and sub-basins. Black 

outlines = sub-basin boundaries; blue = impervious surfaces; white = non-impervious 

surfaces. Sub-basin names are color coded based on impact level (green = reference; orange 

= moderate; red = high).  
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Fig. 23 Top: regression of the percentages of impervious surfaces on a sub-basin level 

compared to concentrations of specific conductivity (µS/cm); bottom: regression of the 

percentages of impervious surfaces on a sub-basin level compared to concentrations of 

specific conductivity (µS/cm) with outlier removed. 
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Spring Cold-Water Fish vs Riparian Height

Relative % Cold-Water Fish
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Summer Cold-Water Fish vs Riparian Height

Relative % Summer Cold-Water Fish
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Fig. 24 Regression analysis comparing relative percentages of cold-water fish species in 

spring (top; P = 0.006) and summer (bottom; P = 0.002) to average riparian corridor heights. 

 

R2 =  0.422 

R2 =  0.495 
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Spring Cold-Water Fish vs Impervious Surface

Relative % Cold-Water Fish
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Summer Cold-Water Fish vs Impervious Surface

Relative % Summer Cold-Water Fish
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Fig. 25 Regression analysis comparing relative percentages of cold-water fish species in the 

spring (top; P = 0.004) and summer (bottom; P = 0.002) to sub-basin wide percentages of 

impervious surface. 

 

R2 =  0.449 

R2 =  0.493 
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